SCOPE OF WORK
TESTING OF INVISIRAIL® SS TO ASSESS RESISTANCE TO LOADS ON GUARDS FOR EXTERIOR GUARDS AS PRESCRIBED IN THE 2015 NATIONAL BUILDING CODE OF CANADA (NBC), AND 2012 ONTARIO BUILDING CODE (OBC)

REPORT NUMBER
103287266TOR-001B

TEST DATE(S)
05/03/17 - 05/15/17

ISSUE DATE
02/28/18

RECORD RETENTION END DATE
02/28/23

PAGES
8

DOCUMENT CONTROL NUMBER
GFT-OP-10C (DRAFT)
© 2017 INTERTEK
TEST REPORT FOR LIV BUILDING PRODUCTS
Report No.: 103287266TOR-001b
Date: 02/28/18

REPORT ISSUED TO
CUSTOMER FULL NAME
LIV Building Products
6050 Owen Road
Uxbridge, ON, L6P 1R1

SECTION 1
SCOPE

Intertek Building & Construction (B&C) was contracted by LIV Building Products (LIV) to perform testing of the InvisiRail® SS stainless steel/glass surface mount guard system. The scope of the testing was to assess the ability of the guard system to resist the specified Loads on Guards as prescribed in the following codes:

2015 National Building Code of Canada Article 4.1.5.14, Sentence (1)(b) and (c), (2), (3), (4), and (6)

2012 Ontario Building Code Article 4.1.5.14, Sentence (1)(b) and (c), (2), (3), (4), and (6)

This report does not constitute certification of this product nor an opinion or endorsement by this laboratory.

SECTION 2
SUMMARY OF TEST RESULTS

The LIV Building Products (LIV) InvisiRail® SS stainless steel/glass surface mount guard system evaluated in this report demonstrated resistance to Loads on Guards as presented in Section 6 of this report.

For INTERTEK B&C:

COMPLETED BY: Daniel Dubecyk
TITLE: Technical Analyst
BUILDING PRODUCTS
SIGNATURE:
DATE: 02/28/18

REVIEWED BY: Joe DeRose, P.Eng.
TITLE: Project Engineer
BUILDING PRODUCTS
SIGNATURE:
DATE: 02/28/18

This report is for the exclusive use of Intertek’s Client and is provided pursuant to the agreement between Intertek and its Client. Intertek’s responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample(s) tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.
SECTION 3
EQUIPMENT

Calibration of test equipment was performed by Intertek B&C in accordance with ISO 17025 requirements.

<table>
<thead>
<tr>
<th>Instrument/Equipment</th>
<th>Asset #</th>
<th>Calibration Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powerfist 24 in. stroke hydraulic ram</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Electric Hydraulic Pump</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Load Cell with Display</td>
<td>280-01-0774</td>
<td>Dec 23, 2017</td>
</tr>
<tr>
<td>600 mm Scale</td>
<td>280-01-1234</td>
<td>Feb 13, 2018</td>
</tr>
<tr>
<td>Mitutoyo Digital Indicator</td>
<td>280-01-0585</td>
<td>Mar 28, 2018</td>
</tr>
</tbody>
</table>

SECTION 4
TEST PROCEDURE

The NBC/OBC specified Live Loads are summarized in Table 2 below:

<table>
<thead>
<tr>
<th>Horizontal Load Applied at any Point at the Minimum Required Height of the Guard</th>
<th>Horizontal Load Applied Elements Within the Guard, Including Solid Panels and Pickets</th>
<th>Evenly Distributed Vertical Load Applied at the Top of the Guard</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75 kN/m or concentrated load of 1.0 kN applied at any point, whichever governs</td>
<td>Concentrated load of 0.5 kN applied at any point on individual elements</td>
<td>1.5 kN/m uniform load</td>
</tr>
</tbody>
</table>

The applicable test loads to be applied are based on the specified loads in Table 1 increased by the following safety factors:

- specified loads multiplied by $1.5/\phi$, where $\phi=0.90$ resistance factor for bearing stress on steel members resulting in plastic yielding failure, resulting safety factor was 1.67,
- specified loads multiplied by $1.5/\phi$, where $\phi=0.67$ resistance factor for fasteners, for testing of steel connections the resulting safety factor was 2.24,
- specified loads multiplied by $1.5/\phi$, where $\phi=0.60$ resistance factor for glass, for testing of glass infill panels the resulting safety factor was 2.5.

The deflection of the guard system components under the specified and factored loads was measured and is detailed in this report.
TEST REPORT FOR LIV BUILDING PRODUCTS
Report No.: 103287266TOR-001b
Date: 02/28/18

Vertical Uniform Load on Top Rail
Quarter-point loading was applied to the top surface of the glass in a vertical direction by means of the loading system comprised of a calibrated load cell/single ram/pump system and load distributing steel bar. An applied test load corresponding to 1.5 kN/m was applied to the top rail and held for 1 minute. After release of the load, the system was evaluated for failure, evidence of disengagement of any component, and visible cracks in any component.

Horizontal Concentrated Load of Upper Glass at Mid-span
The initial position of the top of the glass (at mid span) was measured. A concentrated horizontal load of 1.0 kN (delivered with a 100 mm by 100 mm platen) was applied to mid span of the top of the glass by means of a calibrated load cell/single ram/pump system and held for 1 minute, whereupon the position of the glass was measured. The load was then released and the residual position of the top of the glass was again measured. The factored load indicated in Section 5.1 was applied and the glass deflection was measured at full load and after removal of the test load. After release of the load, the system was evaluated for residual deflection, failure, evidence of disengagement of any component and visible cracks in any component.

Horizontal Concentrated Load at End Connection
A section of guard was installed at a perpendicular angle. A concentrated horizontal load of 1.0 kN (delivered with a 100 mm by 100 mm platen) was applied to the top of the glass adjacent the corner post by means of the loading system comprised of a calibrated load cell/single ram/pump system and held for 1 minute. The factored load indicated in Section 5.1 was applied and the glass deflection was measured at full load and after removal of the test load. After release of the load, the system was evaluated for failure, evidence of disengagement of any component and visible cracks in any component.

Horizontal Concentrated Load on Post
The initial position of the post was measured. A concentrated horizontal load of 1.0 kN (delivered with a 100 mm by 100 mm platen) was applied to top of the post by means of a calibrated load cell/single ram/pump system and held for 1 minute, whereupon the position of post was measured. The load was then released and the residual position of the post was again measured. The factored load indicated in Section 5.1 was applied and the rail deflection was measured at full load and after removal of the test load. After release of the load, the system was evaluated for residual deflection, failure, evidence of disengagement of any component and visible cracks in any component.

Horizontal Load on Infill
An outward concentrated horizontal test load of 0.5 kN (delivered with a 100 mm by 100 mm platen) was applied to the middle of the glass light by means of a calibrated load cell/single ram/pump system and held for 1 minute. The factored load indicated in Section 5.1 was applied and the glass deflection was measured at full load and after removal of the test load. After release of the load, the system was evaluated for failure, evidence of disengagement of any component and visible cracks in any component.
SECTION 5
TEST SPECIMEN DESCRIPTION

The guard system tested consisted of three stainless steel InvisiPosts with welded stainless steel bases, and an infill of 10 mm tempered glass.

When installed, the guard length, inside-to-inside post, measured 1630 mm (64 in.). The posts were spaced 1637 mm (64.25 in.) on center. As installed, the top of the top rail was 1070 mm (42 in.) up from the floor surface.

GUARD ASSEMBLY DESCRIPTION

The InvisiRail™ SS guard component descriptions and key dimensions are summarized in Table 3 below.

<table>
<thead>
<tr>
<th>Component</th>
<th>Part</th>
<th>Part Number</th>
<th>Part Dimensions (in./mm)</th>
<th>Reported Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>InvisiPost</td>
<td>Post welded to 4.75 in. (121mm) x 2.5 in. (64 mm) x 0.375 in. (9.5mm) surface mount base.</td>
<td>IVP42F-SS</td>
<td>42.5 (1080) x 2.5 (64) to 1.50 (38) taper</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td>Glass Light</td>
<td>10mm thick Glass top and bottom height above surface</td>
<td>IVR42-D-62</td>
<td>67.9 (1588) x 38.9 (987)</td>
<td>Tempered Glass</td>
</tr>
<tr>
<td>Clamp s (4 per section) located 75 mm up from lower edge of glass, and 60 mm down from upper edge of glass on both sides.</td>
<td>IVRCON</td>
<td>2.52 (64) x 1.77 (45)</td>
<td>Stainless Steel</td>
<td></td>
</tr>
<tr>
<td>Glass Clip Sandwich Fasteners (2 each)</td>
<td>-</td>
<td>M6x1.0 Countersink 10mm screw type</td>
<td>Stainless Steel</td>
<td></td>
</tr>
<tr>
<td>Glass Retaining Pin</td>
<td>-</td>
<td>20 by 8 OD</td>
<td>Stainless Steel</td>
<td></td>
</tr>
<tr>
<td>Retaining Pin Bushing</td>
<td>-</td>
<td>8 by 12 OD</td>
<td>Nylon</td>
<td></td>
</tr>
<tr>
<td>Universal Angle Adapter for 45 degrees corner angle</td>
<td>IVRANG</td>
<td></td>
<td>Stainless Steel</td>
<td></td>
</tr>
</tbody>
</table>

SPECIMEN PREPARATION

The guard specimen was assembled by the client. The Flange (Surface) Mount was secured through composite deck board to a 6 in. x 6 in. pressure treated SPF substrate using “U2 Fasteners™ 2-22-106000” 3/8x6 in. Construction Screw fasteners.
CONDITIONING

The guard specimens were tested in the laboratory under ambient conditions. No specific conditioning parameters were required before testing.

SECTION 6
TEST RESULTS

Table 4: Resistance to Loads, Deflections, and Failure Observations

<table>
<thead>
<tr>
<th>Load Type</th>
<th>OBC Specified Load</th>
<th>Applicable Safety Factor</th>
<th>Required Factored Load</th>
<th>Outward Load Deflection (mm)</th>
<th>Inward Load Deflection (mm)</th>
<th>Resistance of Guard Assemblies to Factored Loads Required to Meet OBC and NBC4.1.5.14</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-fill Load</td>
<td>0.5 kN (112 lbf)</td>
<td>2.5</td>
<td>1.25 kN (280 lbf)</td>
<td>21</td>
<td>13</td>
<td>Pass</td>
</tr>
<tr>
<td>Vertical Uniform Load of Upper Glass</td>
<td>1.5 kN/m (103 plf)</td>
<td>2.5</td>
<td>3.75 kN/m (257 plf)</td>
<td></td>
<td>7</td>
<td>Pass</td>
</tr>
<tr>
<td>Mid-span Concentrated Load of Upper Glass</td>
<td>1.0 kN (225 lbf)</td>
<td>2.5</td>
<td>2.5 kN (562 lbf)</td>
<td>95</td>
<td>93</td>
<td>Pass</td>
</tr>
<tr>
<td>Horizontal Concentrated Load at End Connection</td>
<td>1.0 kN (225 lbf)</td>
<td>2.5</td>
<td>2.5 kN (562 lbf)</td>
<td></td>
<td>36</td>
<td>Pass</td>
</tr>
<tr>
<td>Adjacent to Post Connection Concentrated Load</td>
<td>1.0 kN (225 lbf)</td>
<td>2.5</td>
<td>2.5 kN (562 lbf)</td>
<td>93</td>
<td>70</td>
<td>Pass</td>
</tr>
<tr>
<td>Top of Post Concentrated Load</td>
<td>1.0 kN (225 lbf)</td>
<td>1.67</td>
<td>1.67 kN (450 lbf)</td>
<td></td>
<td>107</td>
<td>Pass</td>
</tr>
</tbody>
</table>

No evidence of disengagement or visible cracks were observed in any component of the guard system.
The LIV Building Products (LIV) InvisiRail® SS stainless steel/glass surface mount guard system evaluated in this report demonstrated resistance to Loads on Guards as prescribed in the following codes:

- 2015 National Building Code of Canada Article 4.1.5.14, Sentence (1)(b) and (c), (2), (3), (4), and (6)
- 2012 Ontario Building Code Article 4.1.5.14, Sentence (1)(b) and (c), (2), (3), (4), and (6)

Load adjustment factors as outlined in this report were applied to the specified loads.
SECTION 8
REVISION LOG

<table>
<thead>
<tr>
<th>REVISION #</th>
<th>DATE</th>
<th>PAGES</th>
<th>REVISION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>02/28/18</td>
<td>8</td>
<td>Original Report Issue</td>
</tr>
</tbody>
</table>